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Abstract

The modeling of ballistic quantum transport in ultimate size semiconductor devices usually involves a self-consistent

solution between the Schrödinger and the Poisson equations. In the 2D or 3D real space, this procedure requires huge

computer resources to obtain the I–V characteristics. The general approach proposed in this article relies on the decom-

position of the wave function on subband eigenfunctions, which account for the confinement of the electrons in the

whole structure. The method can be applied to study large 2D and 3D real systems with a drastic reduction of the

numerical cost, since the dimension of the transport problem for the Schrödinger equation is now reduced in real space.

The results obtained for the 2D nanoscale MOSFETs show the efficiency of the algorithm and allow to estimate the

effects of the coupling between the subbands. The asymptotic approach of the subband decomposition is also presented

for devices showing a strong confinement for the electron gas as the 3D electron waveguide devices.
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1. Introduction

Nowadays, a great challenge consists in the down-scaling of electronic components at the nanometer

scale with the aim to obtain high speed and high functionality devices. In this task, modeling and numerical

simulations play an important role in the determination of the limit size of the nanoscale MOSFETs [1–4]

as well as the design of new devices whose electron transport properties are mainly based on quantum
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effects, such as the electron waveguide devices [5–12]. In these ultimate size devices, the electron transport is

expected to operate in a quantum ballistic regime in the active region outside of the electron reservoirs [13–

15]. The model used in this article is defined by a self-consistent process between the calculation of the elec-

tron density and the space charge effects using the Poisson�s equation. In the device, the electrons are in a

mixed state with given statistics. The elementary states depend on a continuous index and are solutions of
the stationary Schrödinger equation with open boundary conditions at the contacts between the device and

the electron reservoirs. At each iteration step of the self-consistent process, the calculation of the electron

density involves the computation of a large number of wave functions.

An alternative approach consists to solve the non-equilibrium Green�s function equations (NEGF) self-

consistently with the Poisson�s equation, and we refer [16,17] where this method is applied, respectively, for

the one gate and the two gates nanoMOSFETs. The Schrödinger–Poisson and NEGF-Poisson approaches

are formally equivalent, since the self-energy functions which are involved within the NEGF formalism can

also be considered as open boundary conditions for the Schrödinger equation [18,19]. However, the two
approaches show some important differences: (i) in their numerical treatment [20], (ii) in their possibility

to be extended to scattering problems (see [21] for the NEGF formalism, and [22] for the wave function

formalism), (iii) in the derivation of open boundary conditions associated with complex structures for

the reservoirs (beyond the semi-infinite waveguides and the parabolic dispersion relation assumption).

All these points will be developed in a future article.

In a previous article [23], our parallel finite element simulator NESSIE was presented to simulate the

electron transport in 3D nanodevices using a full self-consistent quantum model. In the 2D and 3D systems,

this self-consistent approach usually requires huge computer resources due to the large size and the number
of the linear systems arising from the transport problem. A quasi-3D model has been proposed to overcome

these difficulties, and it has been successfully applied to electron waveguide devices showing a strong con-

finement for the electron gas. However, many other semiconductor devices involve heterostructures where

the electron gas is confined in one or many directions of the device. This article proposes to extend the func-

tionalities of NESSIE to handle arbitrary structures using a general subband decomposition approach of

the Schrödinger equation in the confined directions, while reducing the dimension of the transport problem

in real space. Also, the derivation of the quasi-full dimensional model is presented as an asymptotic ap-

proach within this general framework.
Prior works on the decomposition by modes of the transport problem have been presented in the early

90s in [24–29]. A subdivision of the quantum point contact device by parallel slices along the transport

direction was considered, while either the mode matching method or the recursive Green�s function method

[5,16,30,31] was essentially applied to solve the problem. In the mode matching method, the wave function

is expanded in terms of exponentials, which is correct only if one assumes a stepwise potential between the

slices. The original problem using the mode matching technique is then approximated at the physics level.

The recursive Green�s function approach is a numerical procedure often used to solve a tight-binding type

model (i.e. a finite difference discretization in real space). However, this method has some numerical limi-
tations for large structures, since it requires to invert a matrix at each slice (where the size is proportional to

the number of discretization points in the slice) in a recursive way along the transport direction. Our ap-

proach consists rather to discretize the variational form of the problem using the finite element method,

and to solve the obtained large sparse symmetric linear systems with a preconditioned Krylov subspace iter-

ative method. In addition, the potential is computed within a fully self-consistent quantum model, while

many authors compute the potential within a semi-classical self-consistent Thomas–Fermi approach (this

approximation is only used as initial guess in our Schrödinger/Poisson solver). More recently in [17], the

authors compare the results of their full 2D self-consistent quantum simulation on a double gate MOSFET,
with those obtained using a space mode representation model which is based on a subband decomposition

with no-coupling effects between the modes. However, we will show in this article that the effects of the cou-

pling between the modes become important in the I–V characteristics for non-uniform structures.
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Section 2 of this article consists in an overview of the full transport model in the real space, where the

nature of boundary conditions in the device is discussed. The subband decomposition of the Schrödinger

equation in the confined directions for the electrons is presented in Section 3. This approach will be applied

to simulate two particular quantum devices: the nanoscale MOSFETs in Section 4 and the electron wave-

guide devices in Section 5.
2. Overview of the full model

Considering X a 3D box in the real space, the quantum devices nature is related to the boundary con-

ditions for the wave function on oX in the directions x, y and z (see Fig. 1).

In the usual cases, one can define three kinds of boundary conditions such as the infinite, the confined

and the open boundary conditions. The infinite boundary conditions are related to a translation invariance
of the potential, where the wave function is defined as plane waves. The open boundary conditions take into

account the motion of the electrons in the structures and they are usually associated to the contact of the

device with an external electron reservoir. Finally, the confined boundary conditions are defined when the

probability to find an electron outside the device is equal to zero (this yields a quantization of energy levels).

The first column of Table 1 lists different device configurations as function of the nature of the boundary

conditions on each direction.

Denoting e1 the confined direction(s) of the electron gas, e2 the transport direction(s) where the motion

of the electrons takes place, and e3 the infinite direction(s), we write
X ¼ X1 � X2 � X3
with e1 2 X1, e2 2 X2 and e3 2 X3. Due to the translation invariance of the problem in the e3 direction (the

existence of a e3 infinite direction leads to X3 = ]�1,+1[), the full wave function on X can be separated as
WEðe1; e2; e3Þ ¼ eik3e3weðe1; e2Þ; ð1Þ

where the additional exponential part for the wave function corresponds to a plane wave associated to the

wave vector k3. The expression of the energy is given by
E ¼ eþ ð�hk3Þ2

2m� ð2Þ
with m* is the isotropic effective mass, and e is the energy defined in the reduced domain X1,2 = X1 · X2.

Finally, the wave function we is solution of the following Schrödinger equation in X1,2
z y

x

Fig. 1. A 3D box in the real space.



Table 1

List of different device configurations as function of the nature of boundary conditions on each direction

Direction x Direction y Direction z e1 e2

Free electrons Infinite Infinite Infinite WE = eikxxeikyyeikzz

1D devices Open Infinite Infinite x WE = eikyyeikzzu(x)
2D devices Open Infinite Open x, z WE = eikyyu(x,z)
3D devices Open Open Open x, y, z WE(x,y,z) ” u(x,y,z)
0D quantum dots Confined Confined Confined x, y, z WE = d(E � Ei)vi and {Ei,vi(x,y,z)}
1D quantum wires Infinite Confined Confined y, z WE = eikxxvi and {Ei,vi(y,z)}
2D electron gas Infinite Infinite Confined z WE = eikxxeikyyvi and {Ei,vi(z)}
3D waveguide devices I Open Open Confined z x, y WE =

P
i u

i(x,y)vi and {Ei(x,y),vi(z;x,y)}
3D waveguide devices II Open Confined Confined y, z x WE =

P
i u

i(x)vi and {Ei(x),vi(y,z;x)}
2D nanoscale MOSFETs Open Infinite Confined z x WE = eikyy

P
i u

i(x)vi and {Ei(x),vi(z;x)}

The wave functionsWE are expressed within the subband decomposition approach using e1 as the confined directions while e2 is related

to the transport directions. We denote by uthe wave function solution of the Schrödinger equation in the transport directions and

{Ei(e2),vi(e1;e2)} the eigenpairs of the Schrödinger equation in the confined directions.
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� �h2

2m� D1;2weðe1; e2Þ þ Uðe1; e2Þweðe1; e2Þ ¼ eweðe1; e2Þ; ð3Þ
where U is the energy potential, and we note D1;2 ¼ o
2=oe21 þ o

2=oe22.
One way to solve this equation is to use the Quantum Transmitting Boundary Method in the X1,2

domain [32]. This method consists to compute the variational form of the problem using a finite element

method. For this purpose, suitable open boundary conditions are derived for the contacts region with

the reservoirs which are considered as semi-infinite leads (see Appendix A).

The full real space numerical treatment appears very time consuming because of both the size of problem

(the number of discretization points in X1,2 may be high) and the large number of Schrödinger equations

which are involved in the calculation of the electron density (integration over the energies). The subband

decomposition approach presented in the next section is expected to significantly improve the computation
times while reducing the size of the transport problem in real space.
3. Subband decomposition of the Schrödinger equation in the confined direction

In practice, the method requires that one can subdivide the structures into a large number of X1 slices

(1D or 2D) along the transport e2 direction in X2 then perpendicular to the current flow (see Fig. 2 for

example).
We assume that the potential energy U(e1,e2) is given on X1,2. Let vi(e1;e2) be the normalized eigenfunc-

tion solving the eigenvalue problems on X1 in the e1 confined direction which depend on the e2 transport

direction
� �h2

2m� D1viðe1; e2Þ þ Uðe1; e2Þviðe1; e2Þ ¼ Eiðe2Þviðe1; e2Þ; ð4Þ
such as "e2
R
X1
viðe1; e2Þvjðe1; e2Þ de1 ¼ di;j;

viðe1; e2Þ ¼ 0 if e1 2 oX1;

(
ð5Þ
therefore the reduced wave function we can be expanded in the multi-mode basis vi



Ω 1

Ω2

e2

Fig. 2. In this 3D box, the domain X1,2 is subdivided into X1 2D slices (confined domain associated to the confined e1 directions) along

the 1D transport e2 direction.
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weðe1; e2Þ ¼
X1
i¼1

ui
eðe2Þviðe1; e2Þ: ð6Þ
The wave functions ui
e satisfies the following coupled Schrödinger equation on X2
�D2u
i
eðe2Þ � 2

X1
j¼1

~c1ijðe2Þ � r2u
j
eðe2Þ �

X1
j¼1

c2ijðe2Þuj
eðe2Þ ¼

2m�

�h2
e� Eiðe2Þð Þui

eðe2Þ; ð7Þ
where~c1ij and c2ij are extra-diagonal coefficients for i 6¼ j given by
~c1ij ¼
Z
X1

viðe1; e2Þr2vjðe1; e2Þ de1; ð8Þ

c2ij ¼
Z
X1

viðe1; e2ÞD2vjðe1; e2Þ de1: ð9Þ
One can show that the coefficient~c1ij is equal to zero if i = j, and the expression of the c2ij coefficients can also

be written like
c2ij ¼ dive2ð~c
1
ijÞ �

Z
X1

r2viðe1; e2Þ:r2vjðe1; e2Þ de1: ð10Þ
The subband decomposition approach can be applied to different devices configurations for which the

expression of the wave functions are summarized in Table 1. For particular structures such as electron

waveguide devices and nanoscale MOSFETS (in the last three rows of the table), one note that in addition

to 1D (resp. 2D) parallel slices for a 2D (resp. 3D) structure, the subdivision of the devices along the trans-

port direction can also be concerned with 1D slices into 3D structure. The expressions of the boundary con-
ditions of the transport Schrödinger equation (7) are derived from the full problem and will be discussed for

these particular types of devices in Appendix B.

To summarize, the wave functionWE(e1,e2,e3) is obtained through the subband representation defined by

Eqs. (1), (4)–(9). The non-infinite part we(e1,e2) is computed by solving eigenvalue problems in the e1 con-

fined directions and an open coupled Schrödinger equation along the e2 transport directions. The overall

problem is thus equivalent to solve only one Schrödinger equation in X1,2. However, the large number

of the wave functions WE required to compute the electron density, involves the same basis functions

vi(e1;e2) which is computed only once in the subband decomposition (for a given potential). Also, the cou-
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pled Schrödinger equation (7) has to be solved numerically only for a finite and relevant number of cou-

pling modes which depends on the energy level. Since the size of the matrix used to solve the wave function

ue(e2) will be then much smaller than the one used to solve directly the wave function we(e1,e2), the subband

decomposition approach is then expected to require less computer resources than the full dimensional one.
4. The subband decomposition approach applied to the nanoscale MOSFETs

The most basic element in the design of a large scale integrated circuit is the transistor. The challenges of

continued down-scaling of the metal oxide semiconductor field effect transistor (MOSFET) provide oppor-

tunities for nanoelectronic to improve the speed and efficiency of semiconductor materials. Our typical de-

vice of interest are very small Si/SiO2 structures with very short channel(s) lengths where quantum transport

is assumed to be ballistic (see for example Fig. 3 for the MOSFET with one and double gates).
The I–V characteristics of the devices are obtained by a self-consistent Schrödinger–Poisson model,

using open boundary conditions for the scattering states at the source/drain interfaces (xs and xd) of the

reduced domain [xs,xd] · [0,Lz].

In this approach, the positive doping profile regions at the source and drain contacts are equivalent to

small electron reservoirs, in which we assume that the potential does not depend on the transport direction.

Moreover, the model is invariant in the y direction (infinite boundary conditions) and the problem is then

studied in the x,z domain. The presence of positive and negative doping profiles in the device may also be

taken into account in the model. However, the holes transport due to a possible negative doping profile will
be not considered (the value of this negative doping profile is very small compared to the positive one).

Due to the anisotropic effects in silicon, we note m�
t the transverse effective mass and m�

l the longitudi-

nal one. Also, three different electron configurations appear in the bandstructure within the parabolic

approximation (Fig. 4).

Denoting nx;y;z � nm�
x ;m

�
y ;m

�
z
and ~Jx;y;z �~Jm�

x ;m
�
y ;m

�
z
, respectively, the electron and the current densities of one

of this configuration, where m�
x (respectively m�

y and m�
z ) corresponds to the effective mass in the x direction

(respectively y and z direction), then the electron and the current densities in the device are given by
Fig. 3.

motion
nðx; zÞ ¼ 2 nt;l;tðx; zÞ þ nl;t;tðx; zÞ þ nt;t;lðx; zÞð Þ; ð11Þ

and
~Jðx; zÞ ¼ 2 ~J t;l;tðx; zÞ þ~J l;t;tðx; zÞ þ~J t;t;lðx; zÞ
� �

; ð12Þ
where the factor 2 is due to the symmetry of each valleys (see Fig. 4).
Schematic view of the MOSFET with one gate (on the left) and double gates (reduced domain on the right). The electrons

takes place in one channel in the simple gate MOSFET case, and in two channels in the double gate MOSFET case.
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Fig. 4. Constant energy surface for the first conduction band in silicon (six ellipsoids and three different configurations for the

electrons due to the symmetry properties).
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A 2D Schrödinger–Poisson solver was implemented to solve this problem but the simulation time is high.

Since the electron gas is confined in the z direction both in the reservoirs and along the channel(s) in the

middle of the devices, it is suitable to use the subband decomposition. Therefore, the wave functions are

expanded in a multi-mode basis which depends on the x transport direction. The problem consists now

to solve many 1D eigenvalue problems in the z confined direction and a 1D coupled Schrödinger equation
in the x transport direction.

In the following, we present a detailed study of the model used to solve the electron density for a par-

ticular effective mass configuration ðm�
x ;m

�
y ;m

�
z Þ as well as the most important steps of its numerical imple-

mentation. Finally, the results of the numerical simulations of the double-gate transistor will be discussed as

well as the influence of the coupling modes within the subband decomposition approach.

4.1. Description of the model

As mentioned in Sections 2 and 3, we propose to apply the subband decomposition approach to our par-

ticular case of interest. The confined direction e1 is now given by z, the transport direction e2 is x and the

infinite direction is y. In the 3D domain, the full Schrödinger equation is given by
ðH þ Uðx; zÞÞWEðx; y; zÞ ¼ EWEðx; y; zÞ; ð13Þ

where the Hamiltonian H is defined by
H ¼ � �h2

2

1

m�
xðzÞ

Dx þ
1

m�
yðzÞ

Dy

 !
� �h2

2

o

oz
1

m�
z ðzÞ

o

oz

� �
; ð14Þ
where the effective mass depends on the z direction due to the transition between the oxide and the silicon.

The expressions (1) and (2) of the wave function WE and the energy E in the full domain can be now
written as
WEðx; y; zÞ ¼ eikyyweðx; zÞ with E ¼ eþ ð�hkyÞ2

2m�
y

; ð15Þ
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where we(x,z) is solution of the 2D Schrödinger equation (3) with the open boundary conditions described

in Appendix A. Also, in this case, a plane wave is associated to the translation invariance of the y direction

and m�
y is assumed to be a mean value of m�

yðzÞ on z.

For a given energy e, the wave function we can be written using the subband decomposition
weðx; zÞ ¼
X
i

ui
eðxÞviðz; xÞ; ð16Þ
where the vi(z;x) are the normalized eigenfunctions associated to the eigenvalues Ei(x) solving the following

1D Schrödinger equation in the z confined direction in the ]0,Lz[ domain
� �h2

2

o

oz
1

m�
z ðzÞ

o

oz
vjðz; xÞ

� �
þ Uðx; zÞvjðz; xÞ ¼ EjðxÞvjðz; xÞ: ð17Þ
Finally, the wave functions ui
eðxÞ satisfies the following coupled 1D Schrödinger equation in the ]xs,xd[

domain
� d2

dx2
ui

eðxÞ � 2
X1
j¼1

c1ijðxÞ
d

dx
uj

eðxÞ �
X1
j¼1

c2ijðxÞ þ
2

�h2
c0ijðxÞðe� EjðxÞÞ

� �
uj

eðxÞ ¼ 0; ð18Þ
where the coefficients c1ij; c2ij; and c0ij are given by
c2ijðxÞ ¼
Z Lz

0

viðz; xÞ
o2

ox2
vjðz; xÞ dz; ð19Þ

c1ijðxÞ ¼
Z Lz

0

viðz; xÞ
o

ox
vjðz; xÞ dz; ð20Þ

c0ijðxÞ ¼
Z Lz

0

m�
xðzÞviðz; xÞvjðz; xÞ dz: ð21Þ
The source/drain open boundary conditions for ui
� are derived from the projection of the 2D quantum

transmitting boundary conditions on each mode i. We assume that the c0ij coefficients are neglected if

i 6¼ j ðc0ii � c0ijÞ, which is satisfied if the electron gas is assumed mainly located in the silicon at the contacts.

Therefore, the obtained boundary conditions are similar to the 1D open boundary conditions described in

Appendix B. Namely for a contact located at a point xp, we have
ap
o

ox
uiðxÞjxp ¼ ikpx;ið�2api þ uiðxpÞÞ if i6 IpðeÞ; ð22Þ

ap
o

ox
uiðxÞjxp ¼ �kpx;iu

iðxpÞ if i > IpðeÞ; ð23Þ
where the contact p (”s or d) is equivalent to the source if xp = xs and ap = �1 or to the drain if xp = xd and

ap = 1, kpx;i is the wave vector in the x direction associated to the transverse mode i of the contact p, api is the
amplitude of the incoming wave from the contact p on the mode i, and Ip is the number of propagating
modes of the contact p given by
Ip ¼ sup
i
fe > EiðxpÞg: ð24Þ
In the sequel, we denote by ui
p0;i0;kx the scattering state solution of the Schrödinger equation (18) associated

to one incoming wave from the contact p0, the transverse mode i0, and with the wave vector kx. The ampli-

tude coefficient is then equal to
api ¼ dxp ;xp0 di;i0 ; ð25Þ



158 E. Polizzi, N. Ben Abdallah / Journal of Computational Physics 202 (2005) 150–180
and the reduced energy is now given by
eðp0; i0; kxÞ ¼ Ei0ðxp0Þ þ
ð�hkp0x;i0Þ

2

2m�
x

; ð26Þ
where m�
x denotes the average of the effective mass mx in the z direction
m�
x ½v

p0
i0 � ¼

Z Lz

0

m�
xðzÞjvi0ðxp0 ; zÞj

2
dz � c0i0i0ðxp0Þ: ð27Þ
Similarly, the expression of the effective mass m�
y in (15) can be chosen in order to select the region where the

electron gas is localized in the 2D domain. One possible choice is to replace the m�
y anisotropic effective mass

by its mean value in the x,z directions using as a weight, the wave function we itself
m�
y ½we� ¼

R xd
xs

R Lz
0
m�

yðzÞjweðx; zÞj
2
dx dzR xd

xs

R Lz
0
jweðx; zÞj

2
dx dz

: ð28Þ
Another possible choice would be to replace similarly the 1=m�
y coefficients by its mean value.

To summarize, for a given energy E, the associated full wave function can be written as
WEðx; y; zÞ ¼ eikyywp0;i0;kx
ðx; zÞ ð29Þ
with
wp0;i0;kx
ðx; zÞ ¼

X
i

ui
p0;i0;kx

ðxÞviðz; xÞ: ð30Þ
For a given potential U(x,z) in the [xs,xd] · [0,Lz] region, the electron and current densities in a ðm�
x ;m

�
y ;m

�
z Þ

effective mass configuration correspond to a statistical mixture of these scattering states
nx;y;zðx; zÞ ¼ 2
X
p0

X1
i0

Z þ1

0

jwp0;i0;kx
ðx; zÞj2

Z þ1

�1
fFD Eðp0; i0; kx; kyÞ � lp0

� � dky
2p

� �
dkx
2p

; ð31Þ
where 2 is for the spin factor, fFD is the Fermi Dirac distribution and lp0
� lðxp0Þ is the chemical potential

associated to the source if xp0 ¼ xs or to the drain if xp0 ¼ xd. In the latter expression the integral over the ky
wave vector is related to the plane waves in the y direction while the sum over the contacts, the modes as
well as the integral over the wave vector kx are concerned only with the wave functions wp0;i0;kx

.

Similarly, the current density is given by
~Jx;y;zðx; zÞ ¼ 2
X
p0

X1
i0

Z þ1

0

q�h
m�

x

Imfwp0;i0;kx
ðx; zÞrwp0;i0;kx

ðx; zÞg

�
Z þ1

�1
fFD Eðp0; i0; kx; kyÞ � lp0

� � dky
2p

� �
dkx
2p

: ð32Þ
At equilibrium (with no applied bias voltage between the source and the drain contacts) the chemical pot-

entials are all equal to a single value l. Out of equilibrium, denoting vp0 the applied bias at the contact p0,

we obtain
lp0
¼ l� qvp0 ; ð33Þ
and the net current is non-vanishing.

Finally, the current intensity I in the transport direction is defined by
I ¼
Z Lz

0

~Jðx; zÞ �~x dz: ð34Þ
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4.2. Finite element discretization

To summarize the previous sections, in the Schrödinger–Poisson coupled system, we essentially need to

solve three kinds of equations: (i) a 1D eigenvalue Schrödinger equation in the z direction (17), (ii) a 1D

coupled open Schrödinger equation in the x direction (18) and (iii) a 2D Poisson�s equation in the x,z re-
gion. A natural choice for the mesh is then a non-uniform grid [xs,xd] · [0,Lz] composed by Nx · Ny nodes.

In this case, the only non-standard finite element discretization is concerned with the equation (ii) which is

described in detail in the following.

Let M be the number of modes, then the weak variational formulation of the 1D coupled problem (18)

with open boundary conditions (22) and (23) is as follows.

Find ue � ðu1
e . . .u

M
e Þ 2 ðH 1ð½xs; xd�ÞÞM , such as for all arbitrary test functions /e � ð/1

e . . ./
M
e Þ

2 ðH 1ð½xs; xd�ÞÞM ,

aðue;/eÞ ¼ Lð/eÞ; ð35Þ
where
aðue;/eÞ ¼
XM
i¼1

Z xd

xs

rui
er/i

e dx� 2
XM
i¼1

XM
j¼1

Z xd

xs

c1ijðxÞ
d

dx
uj

e/
i
e dx

�
XM
i¼1

XM
j¼1

Z xd

xs

c2ijðxÞ þ
2

�h2
c0ijðxÞ e� EjðxÞ

� �� �
uj

e/
i
e dx� i

XIsðEÞ
i¼1

ksi ðEÞui
eðxsÞ/

i
eðxsÞ

� i
XIdðEÞ
i¼1

kdi ðEÞui
eðxdÞ/

i
eðxdÞ þ

XM
i¼IsðEÞþ1

ksi ðEÞui
eðxsÞ/

i
eðxsÞ þ

XM
i¼IdðEÞþ1

kdi ðEÞui
eðxdÞ/

i
eðxdÞ; ð36Þ
and
Lð/eÞ ¼ �2i
XIsðEÞ
i¼1

asi k
s
i ðEÞ/

i
eðxsÞ � 2i

XIdðEÞ
i¼1

adi k
d
i ðEÞ/

i
eðxdÞ; ð37Þ
with kpi � kpx;i.
We use the P1 finite element method to solve problem. We note ui � ðui1; . . . ; uiNxÞ the vector of the Nx

(unknown) nodal values of ui
e corresponding to a given mesh by
ui
eðxÞ ¼

XNx

n¼1

uinxnðxÞ; ð38Þ
where xn is the P
1 basis function of the n node with xn(xn 0) = dn,n 0 (xn 0 is the position of the n 0 node). We can

make similar expansions for the test function /i. The system to be solved is
A11 A12 . . . A1M

A21 A22 ..
.

..

. . .
. ..

.

AM1 . . . . . . AMM

0BBBBBBB@

1CCCCCCCA

u1

u2

..

.

uM

0BBBBBB@

1CCCCCCA ¼

L1

L2

..

.

LM

0BBBBBB@

1CCCCCCA; ð39Þ
where Aii are symmetric, complex valued and tridiagonal (Nx · Nx) matrices, Aij (i 6¼ j) are symmetric, real

and tridiagonal (Nx · Nx) matrices, and Li are complex (Nx · 1) vectors. The elements of these matrix are

defined as follows:
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ðAii
n;n0 Þ16 n;n0 6Nx

¼
Z xd

xs

rxnrxn0 dx�
Z xd

xs

c2iiðxÞ þ
2

�h2
c0iiðxÞ e� EiðxÞð Þ

� �
xnxn0dx

� iksi ðEÞdn;1dn0 ;1di6 IsðEÞ � ikdi ðEÞdn;Nxdn0;Nxdi6 IdðEÞ þ ksi ðEÞdn;1dn0 ;1di>IsðEÞ

þ kdi ðEÞuiðxdÞdn;Nxdn0;Nxdi>IdðEÞ; ð40Þ

ðAij
n;n0 Þ

i6¼j
16 n;n0 6Nx

¼ �2

Z xd

xs

c1ijðxÞ
d

dx
xnxn0 dx�

Z xd

xs

c2ijðxÞ þ
2

�h2
c0ijðxÞ e� EjðxÞ

� �� �
xnxn0 dx; ð41Þ

ðLi
nÞ16 n6Nx

¼ �2iasi k
s
iðEÞdn;1di6 IsðEÞ � 2iadi k

d
i ðEÞdn;Nxdi6 IdðEÞ; ð42Þ
where di6 Ip ðEÞ
and di>IpðEÞ

denote the Heavyside function.

Finally, we note that the construction of the system (39) has been done when varying in (40)–(42), the

index i over the mode after the index n over the nodes. The matrix can also be set up by the variation of the

index i before the variation on the index n. In this approach, the obtained matrix is tridiagonal by blocks

where each M · M block is dense.

4.3. Numerical implementation of the Schrödinger–Poisson system

The numerical Schrödinger–Poisson algorithm is summarized by the five following steps:

(1) For a given potential energy U(x,z) in the [xs,xd] · [0,Lz] region, we solve the generalized eigenvalues

problem (obtained after the finite element discretization of (17)) in the confined direction z for all the

nodes along the transport direction with coordinate xn, n = 1 . . .Nx, using the direct method from

LAPACK [33]. Therefore, we obtain Nx sets of eigenfunctions {vi(z)} and eigenvalues {Ei} (see Fig.
5). These functions have to be normalized in the L2[0,Lz] space. The coefficients c2ij; c

1
ij and c0ij are also

calculated using (19)–(21).

(2) For a given energy e, the wave vectors ksi and kdi associated to the incoming scattering states in the

domain in the x transport direction, are calculated using (26). We construct the (M · M) block matrix

(39) composed by the N · N tridiagonal matrices Ai,j defined in (40) and (41). For a given incoming

wave in the contact p0 (p0 ” s,d), and in its transverse mode i0, the coefficients asi and adi are given

by (25). The complex symmetric linear system (39) is solved by direct methods or by iterative ones

as the quasi-minimal residual (QMR) procedure with SSOR or ILUT preconditioner [34].
y
x

z

{χ  (    )} i  x2

{χ  (    )} i  x1 {χ  (       )} i  xNx

 i  xNx–1{χ  (           )}

Fig. 5. A eigenvalue problem is solved on each slices of the device.
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(3) The electron and the current densities are calculated, respectively, using (11), (31), and (12), (32), by

iterations of the previous step on the incoming wave features (contact, mode and wave vector). Oth-

erwise, the calculations of the electron and current densities require to solve a large number of inde-

pendent complex symmetric linear sparse systems. The upper limit onthe integration over the energy is

fixed at lp + 4kBT for the contact p.
(4) The Poisson�s equation is solved in the x,z domain using Dirichlet boundary conditions for the inter-

faces with the gates, and Neumann boundary conditions on the source and drain interfaces. The

obtained real symmetric positive definite sparse system is solved using the preconditioned conjugate

gradient method (with incomplete Cholesky factorization as preconditioner).

(5) Repeat three times all the four previous steps, respectively, for the different effective mass configura-

tions summarized in (11) and (12). Note that the eigenvalues problems in the first step are to be solved

only twice, respectively, for the m�
l and the m�

t configurations in the z variable.

We propose to point out some remarks related to the numerical implementation of this algorithm:

� The most time consuming part of the previous algorithm consists in the calculation of the wave func-

tions. Since both the generalized eigenvalues problems involved in the step (1) and the linear systems

involved in the step (2) can be solved in an independent way, a parallel version of the code was developed

using MPI directives. This allows to approximately divide the calculation time by the number of

processors.

� Implicit numerical schemes have to be used to solve the highly non-linear coupled Schrödinger–Poisson
system. Moreover, the Newton–Raphson method is not appropriate since the density does not depend

locally on the potential. Therefore, for a given potential Vn at the step n, we propose to implicit the

scheme as follows:
�r �rðzÞrV nþ1
� �

¼ q
�0

nDðzÞ � nðx; zÞ T ½V
nþ1�

T ½V n�

� �
; ð43Þ
where T is a functional of V, �0 is the vacuum permittivity, �r is the relative dielectric constant, q is the

free electron charge and nD is the positive doping profile. Because of the exponential behavior of the elec-

tron density in function of the potential V (see below the Thomas–Fermi approximation), a suitable

choice for T is then given by T[V] = exp(qbV) (with b = 1/kBT). The linearization of this coupled system
leads to the Gummel iterative scheme [35] where for a given potential Vn at the step n, the new potential

Vn+1 is now given by
�r �rðzÞrV nþ1
� �

þ q
�0
nðx; zÞ V

nþ1

V ref

¼ q
�0

nDðzÞ � nðx; zÞ 1� V n

V ref

� �� �
ð44Þ
with Vref = kBT/q.

� At equilibrium and in order to obtain a suitable initial guess to begin the simulations, we use the Tho-

mas–Fermi/Poisson semi-classical approximation:
nx;y;zðx; zÞ ¼ 2

Z Z Z þ1

�1
fFDðE � lÞ dkx dky dkz

8p3
; ð45Þ
where the wave functions are plane waves in the whole domain and the energy depends on the local

potential
E ¼ Uðx; zÞ þ �h2

2

k2x
m�

xðzÞ
þ

k2y
m�

yðzÞ
þ k2z
m�

z ðzÞ

 !
: ð46Þ
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In this case the coupled system can be solved using a Newton–Raphson method. However, a better choice

for the initial guess consists to account for the confinement of the electron gas in the z direction using the

vi(z;x) functions [36]. The electron density of this hybrid model is written as
Fig. 6.

case (w

in the
nx;y;zðx; zÞ ¼ 2
X1
i

Z þ1

�1
jviðz; xÞj

2

Z þ1

�1
fFDðE � lÞ dky

2p

� �
dkx
2p

ð47Þ
with
E ¼ Eiðx; zÞ þ
�h2

2

k2x
m�

xðzÞ
þ k2z
m�

z ðzÞ

� �
: ð48Þ
Another alternative approach to this latter is to solve 1D self-consistent Schrödinger–Poisson problems for

each slice (see for example [37,38]).

These two hybrid approaches (quantum in the confined direction and semi-classical in the transport one)

represent a good approximation of the quantum model at equilibrium only with the assumption of a slow
variation for the potential in the x transport direction.

� We propose now to point out some problems that one may meet with the calculation of the functions

vi(z;x) in the simulation of the double gates MOSFET (see Fig. 3). Indeed, if the thickness of the silicon

layer is large enough (	10 nm or more) then the first two modes v1(z;x) and v2(z;x) have very close

energies.

In this case, the numerical procedure used to solve independently the eigenvalue problems in the z direc-

tion (see Fig. 5) does not insure the regularity of the functions v1 and v2 on x. Indeed, in this case the eigen-

values can be considered as double, so that only the vector space spanned by v1 and v2 is smooth in x. Since
we diagonalize each x slice independently of the neighbouring one, the resulting wave functions may not be

smooth in x (see Fig. 6). In order to have the correct values for v1 and v2, we proceed as follows.

Let v1(xj) ” v1(z;xj) and v2(xj) ” v2(z;xj) at the xj coordinate, and let bv1ðxjþ1Þ and bv2ðxjþ1Þ be the result of
the diagonalization procedure at xj+1. The eigenfunctions v1 and v2 at x = xj+1 are then obtained by ‘‘ro-

tating’’ appropriately bv1ðxjþ1Þ and bv2ðxjþ1Þ. Namely,
Variations of the first two eigenfunctions v1(z;x) (on the left) and v2(z;x) (on the right) along the x transport direction. In this

e take 10 nm both for the thickness and the length of the channel), we note that the eigenfunctions show a non-regular behavior

middle of the device.
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v1ðxjþ1Þ
v2ðxjþ1Þ

� �
¼

cosðhÞ sinðhÞ
� sinðhÞ cosðhÞ

� � bv1ðxjþ1Þbv2ðxjþ1Þ

� �
; ð49Þ
where h is the unknown rotation angle. Since v1(xj+1) and v2(xj+1) must be very close to v1(xj) and v2(xj),
we naturally impose the condition
Z Lz

0

v1ðxjþ1Þv2ðxjÞ dz ¼ 0; ð50Þ
which defines h by
tanðhÞ ¼ �
R Lz
0
bv1ðxjÞv2ðxjÞ dzR Lz

0
bv2ðxjÞv2ðxjÞ dz

: ð51Þ
Finally, a last point concerns the sign of both the scalar product of v1(xj + 1) with v1(xj) and the scalar prod-

uct of v2(xj + 1) with v2(xj) on L2[0,Lz], which must be positive. Fig. 7 illustrates now the variations of the

first two eigenfunctions presented in Fig. 6 after the above numerical treatment.

4.4. Numerical simulations of the double-gate transistor

In this section, the subband decomposition approach is applied to the double-gate transistor. The ob-

tained numerical results are used to illustrate the numerical efficiency of this representation whose the sim-

ulation times are compared to those obtained with the full 2D approach.

We denote by L and t, respectively, the length size and the thickness of the channel, the thickness of the

oxide layer under the two gates is defined by tox. We recall that nD is the positive doping profile and that the

whole calculation domain is restricted along the transport direction by xs and xd (see Fig. 3). In our simu-
lations, we take xd � xs = 18 nm, L = 10 nm, t = 5 nm, tx = 1 nm, nD = 1026 m�3, l = 0 and the temperature

T = 300 K. Denoting me the electron mass, then the transverse and longitudinal effective mass in silicon

are, respectively, equal to m�
t ¼ 0:19me m�

l ¼ 0:98me. The effective mass in oxide is chosen as 0.5me and

the relative dielectric constant �r of the silicon and the oxide are, respectively, given by 11.9 and 3.8. The
Variations of the first two eigenfunctions v1(z;x) (on the left) and v2(z;x) (on the right) along the x transport direction

ically obtained using the assumption of degenerate states. We note now a regular behavior for the eigenfunctions in the device.
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features of the grid mesh are Nx = 72 and Ny = 75, whereas the maximum number of modes is equal to

M = 8.

Fig. 8 shows the obtained electron density in the device at equilibrium. In this case, the thickness of the

device is large enough to yield two electron channels in the active region.

Table 2 compares the computer resources required to obtain the same numerical results at equilibrium
by the full 2D approach and by the subband representation. These calculations show that the subband

decomposition approach is approximately 20 times faster than the full 2D one, allowing to reduce a 5 h

simulation time to a 15 min on a bi-compaq DS20, to get 10 points on the I–V curves. These times are pro-

portional to the number of processors due to the perfect parallelism of both models. The speed improve-

ment factor depends on: (i) the number of processors and the machine architecture, (ii) the size of the

transport problem when the size of the transverse one is fixed (that would increase the size of the linear

systems but not of the eigenvalue problems), (iii) the number of points in the confined direction when

the number of points in the transport one is fixed (that would increase the size the linear system for the full
approach while in the subband approach the size of the linear system keeps unchanged while the size of the

eigenvalue problems increases). All these quantitative considerations for the simulations are not exposed in

this article. Some others simulations time results obtained on a Linux cluster are given for the 3D silicon

nanowire devices in [43,44].

Some results on the I–V characteristics of the DG-MOSFET are shown in Fig. 9 as a function of the gate

potential VGS. In the sequel, results are shown for VGS = 0.5 V.

The variations of the first energy levels Ei(x) along the x transport direction for the two configurations of

the effective mass in the z confined direction are given in Fig. 10 at equilibrium for VDS = 0 V and out of
equilibrium for VDS = 0.5 V. In the latter case, six modes are located at the drain contact below the upper

limit of the energy ls + 4kBT if m�
z ¼ m�

l (the thermal energy 4kBT is next to 0.1 eV and the chemical poten-

tial is equal to zero at equilibrium ls ” l = 0), while only three modes appear if m�
z ¼ m�

t . These modes are

the propagating ones where the electron transport takes place from the source to the drain contacts, and

then the higher modes are defined as the evanescent ones.
Fig. 8. Electron density at the equilibrium state. The left figure is plotted using a linear scale while we use a logarithmic one on the right

figure to point out the presence of the two channels.



Table 2

List of the number and the nature of the operations require to solve the problem using the full 2D approach and the subband

representation one (for only one point in the I–V curve)

Full 2D approach Subband decomposition with M = 8

Size of the ‘‘transport Schrödinger matrix’’ 5400 576

Number of linear ‘‘transport Schrödinger matrix’’ 	1500 	1500

Size of the ‘‘confined Schrödinger matrix’’ None 75

Number of linear ‘‘confined Schrödinger matrix’’ None 72

Number of iterations on the potential 	5–10 	5–10

Simulation time factor (on a bi-compaq DS20) 1 0.05
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Fig. 9. I–V characteristics for the device obtained using the subband representation. The gate source voltage VGS is changed with a

step of 0.05 V.
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We note that the drain potential effect involves a shift in the energy levels at the drain contact as shown
in Fig. 11. This shift is expected to be exactly equal to the amplitude of the associated drain bias voltage.

However, due to the Neumann boundary conditions on the potential applied at the drain and the source

contact, we note a drop on the energy level in the source contact while no bias voltage is applied on it. This

problem is related to the ballistic transport assumption and we refer [39] for the physical interpretation of

this phenomena.

The choice of M = 8 modes in our simulations means that we take into account about two evanescent

modes when m�
z ¼ m�

l and VDS = 0.5 V. However, the M = 8 value is an overestimated choice when it im-

plies more than two evanescent modes as for a smaller drain potential (or at equilibrium) or for m�
z ¼ m�

t .
Therefore, the number of transverse mode M considered in the simulations can be adapted to speed up the

numerical convergence of the subband approach for each effective mass and potential configurations.

Fig. 12 shows a close agreement between numerical results on the I–V characteristics when less coupling

operates between the modes. Indeed, the numerical results are almost not changed if only two modes are

coupled, and they lead to very small differences with the zero and the one coupling mode models. Therefore,

it is not necessary to calculate all the extra-diagonal matrix elements Aij of the matrix (39) to get satisfac-

tory results, and then the reduction of the number of non-zero elements can be significant. Let us call the

m-coupling modes model the one for which Aij is set to zero for |i � j| > m. Also, in the 0-coupling mode
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Fig. 10. Energy levels Ei(x) along the x transport direction for the two effective mass configuration in the z direction, at the equilibrium

state (on the left) and out of equilibrium with VDS = 0.5 V (on the right).
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Fig. 11. Example of the behavior of the first mode E1(x) for the m�
l configuration in the z direction, as function of the drain current

voltage VDS.
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model, the modes are not coupled and then the non-diagonal terms in Eq. (18) are neglected. The matrix

(39) is thus a tridiagonal one and its computation requires standard numerical procedure. We could also go
beyond this simplified model and put "i, oxvi(z;x) = 0 in Eq. (18) as suggested in [17,29], then the diagonal

terms c2ii now disappears (we recall that c1ii ¼ 0). In our simulations, we found exactly the same results using

this ‘‘no-coupling’’ model than using the 0-coupling mode model where we have shown that the obtained

results are in a good agreement with the solution. This means that the potential U is expected to keep al-

most the same shape in the z confined direction along the x transport direction (this is true in our devices

since the oxide, the silicon and the gates layers are uniform along the transport direction). Therefore, the

eigenfunctions {vi} should be almost the same along the x direction (the eigenvalues can be different), and

then the no-coupling model appears as a very good approximation.
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However, the caption figure shows very small differences if the model does not involve at least two coupling modes.
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The ‘‘no-coupling’’ model has been called by others authors [27–29] a global adiabatic approxima-

tion, while the ‘‘0-coupling’’ model is called a diagonal adiabatic approximation. In their simulations to

calculate the conductance associated to some class of devices with smooth constriction, it appears that

the ‘‘no-coupling’’ model is a better approximation than the ‘‘0-coupling’’ one. In [29], they point out that

the ‘‘0-coupling’’ model may be inconsistent since it keeps diagonal terms while neglecting equally impor-

tant non-diagonal ones. However as we will show further, the non-adiabatic mode mixing becomes impor-
tant in such non-uniform devices, and off-diagonal terms have to be definitely included in the simulations to

get correct results.

In order to estimate the coupling effects between the modes, we analyze the reflection–transmission coef-

ficients. If the coupling effects are small, an electron injected from the source on the mode i will mainly stay

on this mode. When the coupling is strong enough, the electron can be transmitted or reflected in the others

modes as shown for example in Fig. 13. We define, respectively, Ri and Ti the reflection and the transmis-

sion coefficients in the mode i [40,41] by
Ri ¼
ksx;i
ksx;i0

juiðxsÞj2 if i 6¼ i0;

Ri0 ¼ j � 1þ uiðxsÞj2; ð52Þ

T i ¼
kdx;i
kdx;i0

juiðxdÞj2 8i:
We note that Ri0
+
P

i(Ri + Ti) = 1, and for the devices where no coupling effects occur, we should have

Ri0
+ Ti0

= 1.
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Fig. 13. Schematic representation of the reflection and the transmission waves in the source and drain related to only one incoming

wave from source in the mode 1. We denote the modes i the energy levels, respectively, equal to Ei(xs) in the source and Ei(xd) in the

drain.

168 E. Polizzi, N. Ben Abdallah / Journal of Computational Physics 202 (2005) 150–180
Fig. 10 shows that the energy levels in the devices are much close to each other in the effective mass con-

figuration with m�
z ¼ m�

l than with m�
z ¼ m�

t . Therefore, the coupling effects between the modes are expected

to be more important in the m�
z ¼ m�

l configuration which have been chosen to illustrate the following

numerical results on reflection–transmission coefficients.

For one incoming wave from the source in the mode 1, the obtained reflection and transmission coeffi-

cients on this first mode as function of the energy spectra are given in Fig. 14. At equilibrium the wave

keeps mainly located in the mode 1 since R1 + T1 . 1 for all the energy values. While with a strong bias
voltage on the drain VDS = 0.5 V, the coupling effects are a little bit more important, since R1 + T1 is just

lower than one. These results explain that a very small portion of the wave is reflect or transmit in the other

modes and then it appears small differences between the coupling modes models in the I–V curves in the

saturation regime (see Fig. 12).
Fig. 14. Reflection and transmission coefficients in the mode 1 as function of the injection energy. These results are obtained for only

one incoming wave from the source in the mode 1 and for the m�
z ¼ m�

l configuration. The summation of the reflection and the

transmission coefficients is considered equal to one for all the energy values at the equilibrium state (on the left) and next equal to one

out of equilibrium for VDS = 0.5 V (on the right).
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In order to investigate the coupling effects and the performance of the subband approach, we propose

now to prospect the characteristics of a new device whose the potential variations in the x transport direc-

tion present a non-uniform behavior. In this device displayed in Fig. 15, the additional oxide layer leads to

squeeze the channel region and then the electron density is now located in only one channel. We thus expect

to enhance the importance of the coupling effects between the modes. In the following results, we will con-
sider ls = 4 nm, Ls = 2 nm and ts = 1.5 nm.

Fig. 16 compares the I–V characteristics obtained within different coupling modes models. Note that we

obtain a very good agreement between results only if two coupling modes are considered. While the ob-

tained currents with both the no-coupling model, the 0-coupling mode model and the 1-coupling mode

model show some net differences which increase with the drain potential in the saturation regime. These

models overestimate the results since the quantum resistance due to the overall coupling modes is not taken

into account.

As previously introduced, a detailed study of the coupling modes effects can be given using the results on
the reflection and transmission coefficients in Fig. 17 for equilibrium and in Fig. 18 for out of equilibrium

situations. These results show that R1 + T1 is not equal to one while we consider only one incoming mode

from the source in the mode 1. In this case important reflections and transmissions on the others modes

appear even if the device is at equilibrium. For high source–drain voltages, the 3-coupling modes model

is required since the reflection and the transmission of the wave in the mode 4 is possible. However, we note

that the values of the reflection and the transmission coefficients in the mode 4 are important enough only

next to the upper energy limit.

To summarize, we showed that at least a 2-coupling modes model is preferred for the study of the dou-
ble-gate MOSFET, and it is required for the study of ‘‘exotic’’ structures showing non-uniform behaviors.

The number of needed modes also depends on the geometry of the structure and the uniformity of the

potential in the transport direction. This number can be estimated within the study of the transmission

and the reflection coefficients.

However, we would like to point out that the subband decomposition approach presented in this article

cannot be applied to particular systems with a squeezed channel structure where ls = 0 nm in Fig. 15.
Fig. 15. Representation of a squeezed channel structure (on the left) and its electron density at equilibrium state (on the right). The

electrons are led in only one channel in the structure which it is expected to show the importance of the mode coupling effects in the

subband decomposition approach.
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Indeed, in this case the device presents a discontinuity in the oxide layer (hard constrictions), and it is not

possible to define in this region the derivative of the eigenfunctions vi(z;x) in the x direction, to obtain the

required coefficient c0ij; c
1
ij and c2ij for the subband decomposition. Another approach would be to consider

smooth constrictions with a very small width ls (ls 
 1), that is usually the case in real devices. The numer-

ical treatment of these regions has to be done using a very high numbers of mesh points (large number of

slices) to capture the variation of the constriction.
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5. An asymptotic approach of the subband decomposition

The main goal of this section is to present a quasi-full dimensional model which consists in an asymp-

totic approach of the subband decomposition approach presented before. In this section the potential en-

ergy U(e1,e2) is given in the region X1 · X2 where we recall that the direction e1 denotes the confined
direction(s) of the electron gas, and the direction e2 denotes the transport direction(s) where the motion

of the electrons takes place. The asymptotic approach will be used for a particular structure of potential

U(e1,e2) which implies strong confinement for the electron gas in the e1 direction. In the following, the

potential energy U(e1,e2) will be separated arbitrarily into a potential U1 depending on the e1 confined direc-

tion, and a potential U2 depending on e1,e2, such that
Uðe1; e2Þ ¼ U 1ðe1Þ þ U 2ðe1; e2Þ; ð53Þ

where U2 is assumed slowly varying in e1.

In the case of the potential U2 is equal to zero, denoting bviðe1Þ and bEi the eigenvectors and the eigen-

values solutions of Eq. (4) in the confined direction which does not depend on the e2 transport direction
� �h2

2m� D1bviðe1Þ þ U 1ðe1Þbviðe1Þ ¼ bEibviðe1Þ;R
X1
bviðe1Þbvjðe1Þ de1 ¼ di;j;bviðe1Þ ¼ 0 if e1 2 oX1:

8><>: ð54Þ
Therefore, the coefficients~c1ij and c2ij are equal to zero and the obtained problem in the e2 transport direc-

tion is the decoupled Schrödinger equation (7). The energy Ei(e2) is also equal to bEi and then the wave func-

tions ui(e2) are plane waves in the transport direction.

In the case of the potential U2 does not depend on the e1 confined direction (denoting bU 2ðe2Þ this poten-
tial), the previous eigenvectors and eigenvalues are denoted by bviðe1Þ and bEi. The wave functions ui(e2) are

solutions of the decoupled Schrödinger equation (7) in which the terms associated to the coefficients
~c1ij and c2ij are equal to zero, and where Ei(e2) is replaced by bEi þ bU 2ðe2Þ.

In more general cases, quantum devices are described by a more realistic potential structure since the

potential U2 depends on the e1 confined direction too. Now, assuming that the potential U2(e1,e2) slowly



172 E. Polizzi, N. Ben Abdallah / Journal of Computational Physics 202 (2005) 150–180
varies in the e1 confined direction in the region X1 where the electron gas is mainly located (see for example

[42]), then we can write
U 2ðe1; e2Þ ¼ bU 2ðe2Þ þ uðe1; e2Þ; ð55Þ

where u is a very small potential (iui 
 1) in the vicinity of the electron gas
Z

X1

uðe1; e2Þjviðe1; e2Þj
2
de1 
 1: ð56Þ
This condition is an appropriate one for real devices with a strong confinement.

Using the first order stationary perturbation theory, we obtain
Eiðe2Þ ¼ bEi þ
Z
X1

ðU � U 1Þjbvij
2
de1 þOðkuk2Þ; ð57Þ
and
viðe1; e2Þ ¼ bviðe1Þ þ
X
j 6¼i

Z
X1

ðU � U 1Þbvibvj de1

� � bvjbEi � bEj

þOðkuk2Þ: ð58Þ
The model that we call the quasi-full dimensional model consists in solving the Schrödinger equations (54)

in the e1 confined direction as well as a decoupled Schrödinger equation in the e2 transport direction, where

Ei(e2) is replaced by its approximation given in (57). The latter equation is given in X2 by
� �h2

2m� D2u
i
e;Qðe2Þ þ

Z
X1

ðU � U 1Þjbvij
2
de1

� �
ui

e;Qðe2Þ ¼ ðe� bEiÞui
e;Qðe2Þ; ð59Þ
where the terms associated to the coefficients~c1ij and c2ij are taken equal to zero. This latter approximation

will be justified in the next section. The expressions of the open boundary conditions for this Eq. (59) are

described in Appendix B for the 3D electron waveguide devices presented in Table 1.

In the full dimensional problem, we had to solve only one Schrödinger equation (4) in the domain X
while the quasi-full dimensional model involves for each mode i to solve one Schrödinger equation (59)
in the reduced domain X2 (the single eigenvalue problem (54) is computed only once).
5.1. Error estimates of the quasi-full dimensional model

In this section, we propose to give formally an error estimates for the quasi-full dimensional model

versus the full dimensional one. In order to simplify our purpose, this estimation is limited to the non-

self-consistent problem (the potential is given) and the boundary conditions are assumed the same for

the two models (for example we set u = 0 in this boundary regions). A more rigorous mathematical analysis
of the asymptotic model can be found in [45,46].

Proposition. Denoting ui0
e and ui0

e;Q the wave functions solutions of Eq. (7), respectively, with and without the

terms associated to the ~c1ij and c2ij coefficients, and where i0 means the only incoming mode in the left or the

right contact, then we can formally write:
ui
e ¼ OðkukÞ for i 6¼ i0; ð60Þ

ui
e;Q ¼ 0 for i 6¼ i0; ð61Þ

ui0
e;Q ¼ ui0

e þOðkuk2Þ: ð62Þ
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Proof. For a very small potential u (u 
 1), the functions ui
e and ui

e;Q are equal each others at least at the

first approximation order of u
ui
e;Q ¼ ui

e þOðkukÞ: ð63Þ
The functions ui
e;Q are solutions of Eq. (7) where the terms associated to the coefficients ~c1i0i and bi0i are

equal to zero, then it means to have ui
e;Q ¼ 0 for i 6¼ i0 (the wave function is physically carried on the only

incoming mode i0). The result (60) is then obtained using (63).

Using the stationary perturbation theory (58), one can show that the coefficients~c1i0i defined in Eq. (8)

can be rewritten as
~c1i0i ¼
1bEi � bEi0

Z
X1

bvibvi0r2Uðe1; e2Þ de1 þOðkuk2Þ: ð64Þ
This coefficient~c1i0i is also of the first order of u (since the the derivative of the potential U is of the first order

of u). Therefore, the first term of the right member in the equation of the c2i0i coefficients (10) is of the first
order of u if i 6¼ i0 (equal to zero else since~c1i0i0 ¼ 0). While the second term is of the second order of u using
(58). To summarize the approximation orders of the coefficients~c 1

i0i
and c2i0i are given by
~c1i0i0 ¼ 0; ~c1i0i ¼ OðkukÞ; ð65Þ

c2i0i0 ¼ Oðkuk2Þ; c2i0i ¼ OðkukÞ: ð66Þ
Therefore, all the non-diagonals terms in Eq. (7) associated to the coefficients~c1i0i and c2i0i are of the second
approximation order of u since with the result of Eq. (60), the non-diagonal function ui

e is of the first

approximation order of u. Since all the neglected terms in the quasi-full dimensional model are of the sec-

ond approximation order of u (the diagonal c2i0;i0 term is also of the second approximation order of u), then

the functions ui0
e and ui0

e;Q are equal each others at the second approximation order of u. h
Proposition. Denoting n(e1,e2) and nQ(e1,e2) the electron densities associated, respectively, to the full model

and the quasi-full dimensional model, then we can formally write:
nQðe1; e2Þ ¼ nðe1; e2Þ þOðkukÞ: ð67Þ

Denoting ns(e1,e2) and ns,Q(e1,e2) the surface densities which are defined by the integration of the densities over

the confined direction, then
ns;Qðe1; e2Þ ¼ nsðe1; e2Þ þOðkuk2Þ: ð68Þ
Proof. The calculation of the electron density is related to a summation of the amplitude of the wave

functions over all the energy configurations of the incoming waves in the devices. If we use the symbol

�	� to denote this sum, then, using the result (6), the expressions of the electron densities are equiv-

alent to
nðe1; e2Þ 	 jui0
e ðe2Þj

2jvi0ðe1; e2Þj
2 þ

X
i6¼i0

jui
eðe2Þj

2jviðe1; e2Þj
2

þ 2R
X
j

X
i>j

uj
eðe2Þui

eðe2Þvjðe1; e2Þviðe1; e2Þ
 !

; ð69Þ

nQðe1; e2Þ 	 jui0 ðe2Þj2jv ðe1; e2Þj2; ð70Þ
e;Q i0
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where RðyÞ is the real part of y and i0 denotes the only one incoming mode. The last term of Eq. (69) is

defined as an interference term. A term in the first order of u appears in this interference term for j = i0
or i = i0 when the wave functions in Eq. (69) are replaced by the results (60) and (62). The result (67) is then

established.

The surface densities are obtained by integrating the densities over the e1 confined direction
nsðe2Þ 	 jui0
e ðe2Þj

2 þ
X
i6¼i0

jui
eðe2Þj

2
; ð71Þ

ns;Qðe2Þ 	 jui0
e;Qðe2Þj

2
; ð72Þ
where the interference term in Eq. (71) disappears. The result (68) is obtained using (60) and (62). h
Proposition. Denoting Ip and Ip,Q the current densities at the contact p associated, respectively, to the full

model and the quasi-full dimensional model, then we can formally write:
Ip;Q ¼ Ip þOðkuk2Þ: ð73Þ
Proof. As shown for the expression the electron densities in (69) and (70), one can show that the current

densities can be given by the following expressions:
Ip 	
Z
cp

I ui0
e ðe2Þ

oui0
e ðe2Þ
oep2k

jcp

( )
dcp þ

X
i6¼i0

Z
cp

I ui
eðe2Þ

oui
eðe2Þ
oep2k

jcp

( )
dcp; ð74Þ

Ip;Q 	
Z
cp

I ui0
e;Qðe2Þ

oui0
e;Qðe2Þ
oep2k

jcp

( )
dcp; ð75Þ
where IðyÞ is the imaginary part of y, i0 denotes the only one incoming mode, cp is the trace of the contact p
in the domain X2, and ep2k is the exterior normal derivative on cp. The result (73) is obtained using (60) and
(62). h

To summarize, the error estimate results show that the obtained electron densities are in the first order

between the quasi-full dimensional model and the full model while the surface densities are in the second

order between the two models. In our case, the latter quantity is more significant since the use of the quasi-
full dimensional model is related to devices with a strong confinement for the electron gas (with slowly var-

iation of the potential U2 in the e1 direction). Moreover, the error estimate on the current densities is also in

the second order. Therefore, the quasi-full dimensional model is a good approximation to the full one.
5.2. Remarks

We conclude this section with some remarks about the quasi-full dimensional model:

� In practice, the quasi-full dimensional model only involves to solve one eigenvalue problem on e1 and the

size of the matrix used to solve the wave function ue,Q(e2) is divided by the number of coupling modes M

compared to the solution ue(e2) of the coupled Schrödinger problem in the subband representation.

� In order to solve the eigenvalue problem (54), the quasi-full dimensional model requires to know the

potential U1 which mainly carries the dependence on the potential U in the e1 confined direction. In

the other words, the vertical potential U1 is a potential which ‘‘must be seen’’ by the electrons. In prac-

tice, we define the potential U1 as a weighted average in the e2 direction of the potential U
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U 1ðe1Þ ¼
R
X2
Uðe1; e2Þnsðe2Þ de2R

X2
nsðe2Þ de2

: ð76Þ
In order to ignore the contributions of deserted zones in the e2 direction, the chosen weight is the surface

density ns which depends on the self-consistent process.

� In the whole domain, the wave function of the quasi-full dimensional model WE,Q(e1,e2) is given using

(6), (58) and (61) by
We;Q ¼ ui
e;Qðe2Þ bviðe1Þ þ

X
j 6¼i

Z
X1

ðU � U 1Þbviðe1Þbvjðe1Þ de1
� � bvjðe1ÞbEi � bEj

 !
; ð77Þ
where i is chosen as the only one incoming mode. In this expression, we can show that the second

approximation order on the surface density and the current density is still preserved, even if the second

term of the latter expression is neglected. The model is presented in [23].

5.3. The quasi-full dimensional model applied to the electron waveguide devices

The electron waveguide devices are often based on the local constriction (by means of split gates on the
top) of the 2D electron gas of a very high mobility heterostructure. In this device, the electron transport can

be considered to be ballistic at low temperatures. The electrical properties depend on quantum interferences

and they become controllable by the bias voltage applied to the gates and/or by the potential difference be-

tween the chemical potentials of the input and output terminal of the devices. Based on these principles,

different structures, for example T-stub, directional couplers (Fig. 19), Y-branch, rings, and crosses, etc.

have been proposed in order to reproduce the passive properties of a classical microwave electromagnetic

waveguide in the field of quantum mechanics with the aim of fabricating quantum transistors, electronic

switches, or multiplexers.
A 3D solver for the open Schrödinger–Poisson system was implemented. However, the subband decom-

position of the problem is expected to drastically decrease the simulation time. Assuming that the electron

gas is both confined in the y and z directions as for the T-stub case, and the quantum coupler case (see Fig.

20), then the wave functions can be expanded in a multi-mode basis which depends on the x transport direc-

tion (see the electron waveguide device type II in Table 1). Therefore, the subband decomposition approach

requires to solve a large number of 2D eigenvalue problems in the y,z directions along the x direction. By
Active region

1 2

Shottky gates

2D electron gas

4

1 2

3

Active region
Shottky gates

2D electron gas

. Schematics of a T-stub (on the left) and a quantum directional coupler (on the right). These devices are composed by four

nductor layers with a Shottky gates on the top (Gate, GaAs, n-AlGaAs, AlGaAs, GaAs-substrate). The T-stub device has two

n waveguides while the quantum directional has four. The electron transport takes place in a 2D plane at the AlGaAs/GaAs

ce.



Fig. 20. The density profile after the quantum model convergence for the T-stub (left) and the directional coupler (right). The electron

gas is located a few nanometer below the AlGaAs/GaAs interface (at z = 150 nm).
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this procedure, the eigenpairs can also be computed in a reduced domain in y,z where the electron gas is a

priori assumed to be localized. This general method was recently applied to study 3D silicon nanowire tran-

sistors [43,44], and a challenging trace minimization algorithm for the computation of generalized eigen-

value problems are proposed in [20].

However, due to the strong confinement of the electron gas in the z direction, we propose to use a quasi-
3D approximation to describe the quantum transport. The wave functions can be now expanded in a multi-

mode basis which depends on the transport x,y directions (see the electron waveguide device type I in Table

1). In this way, more complex configurations for the devices than those presented in Fig. 19 could be con-

sidered (for instance with both waveguides in the x and y directions). The method would only require to

solve a large number of 1D eigenvalue problems in the z direction. However, the electron gas is not located

in the regions under the gates since the electron energy is then smaller than the potential energy. These clas-

sically forbidden regions involve vanishing waves in the quantum regime and the probability to find an elec-

tron is then next to zero. To overcome these difficulties and since all the electrons are mainly concentrated
in a quantum well next to the AlGaAs/GaAs interface (with the assumption of a slowly variation of the

potential U2 in the z direction), it appears suitable to use the quasi-3D approximation of the model which

is described in the previous section.

Finally, the derivation of the quasi-3D model simultaneously takes into account the confinement of elec-

trons in the 2DEG and the fact that the electrostatic potential is completely 3D (using the 3D Poisson�s equa-
tion). A detailed description about this model was achieved in [23], where a quantitative satisfactory

agreement between the numerical results was obtained by the twomodels (3D and quasi-3D) through the sim-

ulation of the T-stub device and the quantumdirectional coupler at equilibrium (see Fig. 20). The convergence
speed of the quasi-3D quantum model is approximately 200 times faster than the 3D model. The results ob-

tained with the quasi-full dimensional model approach on a 3D silicon nanowire transistors in [43,44] (which

is called a fast uncoupled mode approach) also show a drastic improvement in the simulation times.
6. Conclusions

The subband decomposition approach described in this article allows to transform a 2D or 3D transport
problem in the nanostructures into a less dimensional one. In this approach, the confined directions for the



E. Polizzi, N. Ben Abdallah / Journal of Computational Physics 202 (2005) 150–180 177
electron gas are not explicitly considered in the transport problem, and the obtained transport Schrödinger

equation exhibits coupling modes effects along the transport direction through extra-diagonal terms. A de-

tailed description of the numerical implementation in the nanoscale MOSFETs was presented and the ob-

tained results showed that much less numerical efforts is required to get the I–V characteristics with the

subband approach than with the full 2D one. Moreover, the performance of the method depends on the
number of coupling modes which are taken into account. This number has to be adapted to each particular

device structure. The derivation of an asymptotic approach of the subband decomposition was also pre-

sented and applied to 3D electron waveguide devices. The reduction of the simulation time of the quasi-

3D model compared to the full 3D one is quite significant.

Further improvements to enhance the numerical efficiency of the self-consistent procedure can be done

at (i) the discretization level using for example new FEM basis functions as presented in [47], where a WKB

basis function allows to drastically reduce the number of slices, (ii) the numerical algorithm level using new

parallel techniques to solve the linear systems and the generalized eigenvalues problems [20].
Finally, let us mention that a general treatment for the simulation of the quantum transport problems

was implemented in our multi-dimensional parallel finite element code NESSIE. The simulator is flexible

enough to study a wide range of characteristics of complex geometries using various self-consistent model

as: semi-classical (Thomas–Fermi), hybrid (Schrödinger and Thomas–Fermi), full quantum model (Schrö-

dinger or NEGF), quantum model based on the subband decomposition with or without asymptotic ap-

proaches (space-mode approach and quasi-full dimensional model).
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Appendix A. Open boundary conditions for the full model

In the following presentation, we shall assume the existence of a e2 transport direction in the domain oX1,2.

Open boundary conditions are defined at the contacts with the reservoirs, while we assume that the wave

function is vanishing (we(e1,e2) = 0) elsewhere at the boundaries. Denoting Cp the frontier associated to the

contact p where the transport direction e2 can be locally separated into ðep2k; e
p
2?Þ. The potential is assumed

transverse inside the contact p and along the ep2k directions, such as Uðe1; ep2?Þ in these regions. Therefore,
if we consider that we = 0 on oCp, the e2^ direction becomes a confined direction too (in addition to the e1
direction) and then we can define a set of eigenfunctions fevp

i ðe1; e
p
2?Þg and eigenvalues fEp

i g, associated to

each contact p. The wave function in the contact p can be expanded in the latter multi-mode basis as
weðe1; e
p
2k; e

p
2?Þ ¼

X1
i¼1

ui;p
e ðep2kÞevp

i ðe1; e
p
2?Þ; ðA:1Þ
where ui;p
e ðep2kÞ are the scattering states which are described by plane waves. The propagating or evanescent

nature of the waves depends on the following carrier mode conditions:
ui;p
e ðep2kÞ ¼ ai;pe expð�ikpi ðeÞe

p
2kÞ þ bi;pe expðikpi ðeÞe

p
2kÞ if i6 IpðeÞ;

ui;p
e ðep2kÞ ¼ bi;pe expð�kpi ðeÞe

p
2kÞ if i > IpðeÞ;

(
ðA:2Þ
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where ai;pe is the amplitude of the incoming wave in the contact p and the mode i, bi;pe is the amplitude of the

outgoing wave or the coefficient of the evanescent one, Ip is the number of propagating mode of the contact

p given by
Ip ¼ sup
i
fe > Ep

i g; ðA:3Þ
and kpi is the wave vector associated to the mode i of the contact p
kpi ðeÞ ¼
2m�

�h2
je� Ep

i j
� �1=2

: ðA:4Þ
At the contact Cp, the wave function and its derivative along the longitudinal ep2k direction are, respectively,

given by (we note ep2k ¼ 0)
wejCp
¼
XIp
i¼1

ðai;pe þ bi;pe Þevp
i ðe1; e

p
2?Þ þ

X1
i¼Ipþ1

bi;pe evp
i ðe1; e

p
2?Þ ðA:5Þ
and
oep
2k
wejCp

¼
XIp
i¼1

ikpi ðeÞð�ai;pe þ bi;pe Þevp
i ðe1; e

p
2?Þ �

X1
i¼Ipþ1

kpi ðeÞbi;pe evp
i ðe1; e

p
2?Þ: ðA:6Þ
Denoting the operator Pp
i ðweÞ as the projection of the wave function we on the ith mode (projector), then

we obtain
Pp
i ðweÞ ¼ hwejevp

i ievp
i ¼

ai;pe þ bi;pe if i6 IpðeÞ;
bi;pe if i > IpðeÞ;

(
ðA:7Þ
where ÆA|Bæ denoting the scalar product between the function A and B on L2(Cp) in the ket-bra notation.

Finally, the open boundary conditions of we on Cp can be rewritten, independently of the unknown coef-
ficient bi;pe , as
De;pðweÞ þNpðweÞ ¼ Ae;p; ðA:8Þ

where Ae,p and the operators De;p;Np are defined as follows:
De;pðweÞ ¼ �
XIp
i¼1

ikpi ðeÞP
p
i ðweÞ þ

X1
i¼Ipþ1

kpi ðeÞP
p
i ðweÞ; ðA:9Þ

NpðweÞ ¼ oep
2k
wejCp

; ðA:10Þ

Ae;p ¼ �2
XIp
i¼1

ikpi ðeÞai;pe evp
i ðe1; e

p
2?Þ: ðA:11Þ
Appendix B. Open boundary conditions for the models using the subband decomposition approach

Assuming the existence of e1 confined directions in the whole domain X1,2, then the particular devices

whose these boundary conditions could be account for are described in Table 1 as the 3D electron wave-

guide devices type I and II, as well as the 2D nanoscale MOSFETs. We also assume that the eigenfunctions
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vi(e1;e2) used in the subband decomposition in (6) are exactly the same functions at the contacts p than the

functions evp
i ðe1; e

p
2?Þ defined in Appendix A. However, for the 3D electron waveguides device type II and

for the 2D nanoscale MOSFETs, the local confined ep2? direction of evp
i is already included in the e1 direc-

tions of vi. We, respectively, obtain for these devices in the real space evp
i ðy; zÞ � viðy; z; xpÞ and evp

i ðzÞ �
viðz; xpÞ.

For these two cases, the boundary conditions on oX2 of the wave function ui
eðe1; e2Þ solution of Eq. (7)

can be derived from the treatment of the boundary conditions for full problem in Appendix A. We define

C2,p = oX2\Cp the frontiers where the open boundary conditions are now locally, then the projector Pi
pðweÞ

in Eq. (A.7) can be rewritten using Eq. (6), as
Pp
i ðweÞ ¼ ui;p

e ðep2kÞv
p
i ðe1Þ; ðB:1Þ
where ui;p
e ðep2kÞ is locally the wave function ui

eðe2Þ at the contacts p on C2,p. The open boundary conditions

for the wave function ui
e are now defined for all the mode i as
Di
e;pðui

eÞ þNi
pðui

eÞ ¼ Ai
e;p; ðB:2Þ
where
Di
e;pðui

eÞ ¼ hvpi jDe;pðWeÞi ¼ �ikpi ðeÞui;p
e di6 IpðeÞ þ kpi ðeÞui;p

e di>IpðeÞ; ðB:3Þ

Ni
pðui

eÞ ¼ hvpi jNpðWeÞi ¼ oep
2k
ui;p

e jC2;p
; ðB:4Þ

Ai
e;p ¼ hvpi jAe;pi ¼ �2ikpi ðeÞai;pe di6 IpðeÞ: ðB:5Þ
Finally, we will note that the vi(z;x,y) eigenfunctions on z obtained with the subband decomposition ap-

proach in (6) for the 3D electron waveguide device type I (even through the asymptotic described in Section

5) are not equal at the contacts p to the eigenfunctions evp
i ðy; zÞ on y,z. In this case, the expression of the

projector (A.7) cannot be simplified as previously.
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